14-Electron Disilene Palladium Complex Having Strong π-Complex Character

Mitsuo Kira,* Yumiko Sekiguchi, Takeaki Iwamoto, and Chizuko Kabuto
Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
Received June 21, 2004; E-mail: mkira@si.chem.tohoku.ac.jp

Much attention has been focused on the structure of transition metal complexes with η^{2}-silicon-silicon doubly bonded species as ligands (disilene complexes). In related alkene complexes, ${ }^{1}$ the bonding of an alkene to a transition metal center is usually understood in terms of alkene-to-metal σ-donation and metal-toalkene π-back-donation, according to the Dewar-Chatt-Duncanson model. ${ }^{2}$ The structure of an alkene complex is significantly influenced by the relative importance between the σ-donation and the π-back-donation; hence, they are classified into a π-complex having a major contribution of σ-donation and a metallacycle having dominant π-back-donation. The geometry around the alkene ligand in the π-complex is not very much different from that of the free alkene, while that in the metallacycle is significantly distorted and characterized by an elongated $\mathrm{C}^{1}-\mathrm{C}^{2}$ bond length (r) and a large bent-back angle (θ) defined by the angle between the $\mathrm{R}^{1}-\mathrm{C}^{1}-\mathrm{R}^{2}$ (or $\mathrm{R}^{3}-\mathrm{C}^{2}-\mathrm{R}^{4}$) plane and the $\mathrm{C}^{1}-\mathrm{C}^{2}$ bond.

In contrast to alkene complexes, very few studies have been reported on the synthesis and properties of disilene complexes. ${ }^{3-6}$ All the disilene complexes whose X-ray structures are known, $\mathrm{Cp}_{2} \mathrm{~W}\left(\mathrm{Si}_{2} \mathrm{Me}_{4}\right)$ reported by Berry et al. ${ }^{4}$ and 16 -electron disilene platinum and palladium complexes $\mathbf{1 - 3}$ reported by us, ${ }^{6}$ are characterized as the metallacylcle on the basis of the above criteria. We report herein the successful synthesis of the first 14 -electron disilene palladium complex $\mathbf{4}$ having strong π-complex character. ${ }^{7}$ Complex $\mathbf{4}$ is promising as a synthetic reagent for novel organosilicon compounds, in view of the high reactivity of three-coordinate 14 -electron complexes having a vacant coordination site. ${ }^{8}$

Disilene complex 4 was obtained as air-sensitve dark-red crystals in 85% yield by the reaction of $\left(\mathrm{Cy}_{3} \mathrm{P}_{2} \mathrm{PdCl}_{2} 5\right.$ with 1,2dilithiodisilane 6^{9} in THF at room temperature (eq 1). ${ }^{10}$ The molecular structure of 4 was determined by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{29} \mathrm{Si}$, and ${ }^{31} \mathrm{P}$ NMR spectroscopies and X-ray crystallography. ${ }^{11}$ The initial reaction would be the reduction of 5 by $\mathbf{6}$ giving zerovalent
$\left(\mathrm{Cy}_{3} \mathrm{P}\right)_{2} \mathrm{Pd}$ (7) and free tetrakis(tert-butyldimethylsilyl)disilene (8). ${ }^{12}$ Because both $\mathbf{7}$ and $\mathbf{8}$ were actually observed during the reaction by NMR spectroscopy, the coupling between $\mathbf{7}$ and $\mathbf{8}$ accompanied by the elimination of $\mathrm{Cy}_{3} \mathrm{P}$ would give the final 14 -electron complex 4. During the reaction of $\left(\mathrm{Cy}_{3} \mathrm{P}\right)_{2} \mathrm{PtCl}_{2}$ with $\mathbf{6},\left(\mathrm{Cy}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}$ and $\mathbf{8}$ formed, but no further reaction proceeded even at reflux in THF.

X-ray structural analysis revealed interesting structural characteristics of complex 4 (Figure 1). In the solid state, the central palladium atom was tricoordinated with the coordination of one tricyclohexylphosphine and an η^{2}-disilene; $\mathrm{Pd}-\mathrm{Sil}$ and $\mathrm{Pd}-\mathrm{Si} 2$ distances are $2.3610(9)$ and 2.4168 (8) \AA. The geometry around the palladium atom was almost planar with the sum of bond angles of $357.60(3)^{\circ}$. Interestingly, tricyclohexylphosphine ligand coordinates unsymmetrically to the cyclopalladadisilane ring; the angles of $\mathrm{P}-\mathrm{Pd}-\mathrm{Si} 1$ and $\mathrm{P}-\mathrm{Pd}-\mathrm{Si} 2$ were $128.94(3)^{\circ}$ and $171.83(3)^{\circ}$, respectively. The central $\mathrm{Si} 1-\mathrm{Si} 2$ bond length was 2.274(1) \AA, which is longer by $0.072 \AA$ than that of the corresponding free disilene $\mathbf{8}(2.202(1) \AA)^{12}$ but considerably shorter than the reported $\mathrm{Si}-\mathrm{Si}$ single bond ($2.335-2.697 \AA$).

In ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{29} \mathrm{Si}$ NMR spectra of 4 in benzene- d_{6} at room temperature, four t - $\mathrm{BuMe}_{2} \mathrm{Si}$ groups were equivalent, and the ${ }^{29} \mathrm{Si}$ resonance of disilene silicon nuclei was observed as a doublet at $65.3 \mathrm{ppm}\left[J\left({ }^{29} \mathrm{Si}-{ }^{31} \mathrm{P}\right)=19 \mathrm{~Hz}\right]$. The doublet signal was unchanged even at $-80{ }^{\circ} \mathrm{C}$. Facile flipping of the $\mathrm{Cy}_{3} \mathrm{P}$ group shown in eq 2 would be responsible for the highly symmetric NMR patterns of 4 (vide infra).

The ${ }^{29} \mathrm{Si}$ NMR resonance at +65.3 ppm is considerably down-field-shifted compared to the corresponding resonances of complexes $2(-46.5 \mathrm{ppm}), \mathbf{3}(-51.9 \mathrm{ppm})$, and hexakis(tert-butyldimethylsilyl)cyclotrisilane $(-156.5 \mathrm{ppm})^{13}$ but still upfield from that of free disilene $\mathbf{8}(+142.1 \mathrm{ppm}){ }^{12}$ The tendency may be related to the difference in the π-complex character among these disilametallacycles.

The bent-back angle θ and bond elongation $\Delta r / r_{0}\left(\Delta r=r-r_{0}\right.$, where r_{0} is the $\mathrm{Si} 1-\mathrm{Si} 2$ bond length in the corresponding free disilene) for $\mathrm{Cp}_{2} \mathrm{~W}\left(\mathrm{Si}_{2} \mathrm{Me}_{4}\right),{ }^{14} \mathbf{1}, \mathbf{2}$, and $\mathbf{3}$ are estimated to be 30.2° and $3.7 \%, 29.3^{\circ}$ and $5.4 \%, 27.5^{\circ}$ and 4.6%, and 26.0° and 5.3%, respectively. Theoretical calculations for $\left(\mathrm{H}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}\left(\mathrm{Si}_{2} \mathrm{H}_{4}\right)$ and $\left(\mathrm{H}_{3} \mathrm{P}\right)_{2^{-}}$ $\mathrm{Pd}\left(\mathrm{Si}_{2} \mathrm{H}_{4}\right)$ showed the metallacycle character of these complexes, whose θ and $\Delta r / r_{0}$ are 25° and 5.6% for the platinum complex and 24° and 5.3% for the palladium complex. ${ }^{15}$ The bent-back angle θ around the central Si atoms of $\mathbf{4}$ were 4.41° for Sil and 9.65° for

Figure 1. Molecular structure of complex 4. In the single crystal of $\mathbf{4}$, toluene molecules were included with the 4 :toluene ratio of $1: 1$. Hydrogen atoms and the toluene molecule were omitted for clarity. Selected bond lengths (A) and angles (deg): Pd-Si1 2.3610(9), $\mathrm{Pd}-\mathrm{Si} 2$ 2.4168(8), $\mathrm{Pd}-\mathrm{P}$ 2.3919(8), Si1-Si2 2.2740(11), Pd-Si1-Si2 62.82(3), Pd-Si2-Si1 60.35(3), $\mathrm{Si} 1-\mathrm{Pd}-\mathrm{Si} 2$ 56.83(3), $\mathrm{P}-\mathrm{Pd}-\mathrm{Si} 128.94(3), \mathrm{P}-\mathrm{Pd}-\mathrm{Si} 2$ 171.83(3).

Si 2 , respectively. The $\Delta r / r_{0}$ value for $\mathbf{4}$ was 3.2%. On the basis of the considerably smaller θ and $\Delta r / r_{0}$ values for 4 than those for $\mathbf{1}-\mathbf{3}, \mathbf{4}$ is regarded as the complex having the strongest π-complex character among the known disilene complexes, due to the intrinsic electron-deficient nature of the central metal of 14 -electron complex.

DFT calculations ${ }^{16}$ for a model 14-electron complex $[9$, $\left(\mathrm{Me}_{3} \mathrm{P}\right) \operatorname{Pd}\left\{\left(\mathrm{H}_{3} \mathrm{Si}\right)_{2} \mathrm{Si}=\mathrm{Si}\left(\mathrm{SiH}_{3}\right)_{2}\right\}$] revealed that as shown in the following chart, the unsymmetrical (T-type) ${ }^{17}$ structure observed for 4 was well reproduced by the optimized structure ($\mathbf{9} \mathbf{U}$), while the $\mathrm{P}-\mathrm{Pd}-\mathrm{Si}^{1}$ angle for $\mathbf{9 U}$ was much smaller than that observed for $\mathbf{4}\left(128.9^{\circ}\right)$ probably due to the steric effects of bulky trialkylsilyl substituents in 4. Unsymmetrical complex 9 U was $2.9 \mathrm{kcal} / \mathrm{mol}$ more stable than symmetrical (Y-type) ${ }^{17}$ complex $\mathbf{9} \mathbf{S}^{\ddagger}$, which was found to be a transition state for the inversion process shown in eq 2. The calculated very low barrier for the inversion is compatible with the symmetric NMR spectra of $\mathbf{4}$ at even low temperatures. ${ }^{18}$

θ at $\mathrm{Si}^{1}=14.5^{\circ}$
θ at $\mathrm{Si}^{2}=28.5^{\circ}$
$\Delta r l r_{0}=3.9 \%$
$\mathbf{9 U}\left(\mathrm{E}=0 \mathrm{kcal} \mathrm{mol}^{-1}\right)$

$\theta=14.2^{\circ}$
$\Delta r / r_{0}=2.7 \%$
$\mathbf{9 S}^{\ddagger}\left(\mathrm{E}=2.9 \mathrm{kcal} \mathrm{mol}^{-1}\right)$

The planarity around the $\mathrm{Si}=\mathrm{Si}$ bond increased in the order $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{2} \mathrm{Pd}\left\{\left(\mathrm{H}_{3} \mathrm{Si}\right)_{2} \mathrm{Si}=\mathrm{Si}\left(\mathrm{SiH}_{3}\right)_{2}\right\}\right](\mathbf{1 0})<\mathbf{9 U}<\mathbf{9 S}^{\ddagger}$; the θ and $\Delta r / r_{0}$ values were 28.2° and $4.3 \%, 21.5^{\circ}$ (av) and 3.9%, and 14.2° and 2.7%, for $\mathbf{1 0}, \mathbf{9 U}$, and $\mathbf{9} \mathbf{S}^{\ddagger}$, respectively. The order would be understood by the effective π-back-donation, depending on the overlap between the lone-pair orbital of a phosphine ligand and a d orbital responsible for the π-back-donation. ${ }^{19}$ Since the π-backdonation in a three-coordinate 14 -electron complex is expected to decrease with increasing $\mathrm{P}-\mathrm{Pd}-\mathrm{Si}^{1}$ angle, the higher planarity around the $\mathrm{Si}=\mathrm{Si}$ bond in $\mathbf{4}$ than that in $\mathbf{9 U}$ may be attributed in part to the larger $\mathrm{P}-\mathrm{Pd}-\mathrm{Sil}$ angle in 4.

Further works on the unique reactions of complex $\mathbf{4}$ are in progress.

Acknowledgment. This work was supported by the Ministry of Education, Culture, Sports, Science, and Technology of Japan
(Grant-in-Aid for Scientific Research on Priority Areas (No. 14078203, "Reaction Control of Dynamic Complexes").

Supporting Information Available: Details for the synthesis of 4 and the X-ray structure determination of $\mathbf{4}$-(toluene), theoretical results for model compounds $\mathbf{9}$ and 10. The X-ray crystallographic data are also available in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) For recent reviews of olefin complexes, see: (a) Frenking, G.; Fröhlich, N. Chem. Rev. 2000, 100, 717. (b) Hartly, F. R. In Comprehensive Organometallic Chemistry; Wilkinson, G., Ed.; Pergamon Press: Oxford, 1982; Vol. 6.
(2) (a) Dewer, M. J. S. Bull. Soc. Chim. Fr. 1951, 18, C71. (b) Chatt, J.; Duncanson, L. A. J. Chem. Soc. 1953, 2939.
(3) (a) Zybill, C.; West. R. J. Chem. Soc., Chem. Commun. 1986, 857. (b) Pham, E. K.; West, R. J. Am. Chem. Soc. 1989, 111, 7667. (c) Pham, E. K.; West, R. Organometallics 1990, 9, 1517.
(4) (a) Berry, D. H.; Chey, J. H.; Zipin, H. S.; Carroll, P. J. J. Am. Chem. Soc. 1990, 112, 452. (b) Hong, P.; Damrauer, N. H.; Carroll, P. J.; Berry, D. H. Organometallics 1993, 12, 3698. (c) Berry, D. H.; Chey, J. H.; Zipin, H. S.; Carroll, P. J. Polyhedron 1991, 10, 1189.
(5) (a) Zarate, E. A.; Tessier-Youngs, C. A.; Youngs, W. J. J. Am. Chem. Soc. 1988, 110, 4068. (b) Zarate, E. A.; Tessier-Youngs, C. A.; Youngs, W. J. J. Chem. Soc., Chem. Commun. 1989, 577.
(6) (a) Hashimoto, H.; Sekiguchi, Y.; Iwamoto, T.; Kabuto, C.; Kira, M. Organometallics 2002, 21, 454. (b) Hashimoto, H.; Sekiguchi, Yu.; Sekiguchi, Yo.; Iwamoto, T.; Kabuto, C.; Kira, M. Can. J. Chem. 2003, 81, 1241.
(7) A 14-electron silene platinum complex $\left(\mathrm{Cy}_{3} \mathrm{P}\right) \mathrm{Pt}($ silene $)(\mathrm{Cy}=$ cyclohexyl $)$ has recently been synthesized: Bravo-Zhivotovskii, D.; Peleg-Vasserman, H.; Kosa, M.; Molev, G.; Botoshanskii, M.; Apeloig, Y. Angew. Chem., Int. Ed. 2004, 43, 745.
(8) (a) Stambuli, J. P.; Bühl, M.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 9346. (b) Stumbuli, J. P.; Incarvito, C. D.; Bühl, M.; Hartwig, J. F. J. Am. Chem. Soc. 2004, 126, 1184. (c) Yamashita, M.; Hartwig, J. F. J. Am. Chem. Soc. 2004, 126, 5344.
(9) Kira, M.; Iwamoto, T.; Yin, D.; Maruyama, T.; Sakurai, H. Chem. Lett. 2001, 910.
(10) For experimental details, see the Supporting Information. 4: air-sensitive dark-red crystals; mp $190^{\circ} \mathrm{C}$ dec; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, \delta\right) 0.55(\mathrm{~s}, 12 \mathrm{H}, \mathrm{Me})$, 0.69 (s, $12 \mathrm{H}, \mathrm{Me}), 1.26(\mathrm{~s}, 36 \mathrm{H}, t-\mathrm{Bu}), 1.43-1.93(\mathrm{~m}, 33 \mathrm{H}$, cyclohexyl); ${ }^{13} \mathrm{C}$ NMR $\left.\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta\right) 2.3\left(\mathrm{SiCH}_{3}\right), 3.8\left(\mathrm{SiCH}_{3}\right), 20.0\left(\mathrm{C}_{\left(\mathrm{CH}_{3}\right)}\right)_{3}\right), 26.5$ $\left(\mathrm{PCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 27.9\left(\mathrm{~d},{ }^{1} J(\mathrm{P}-\mathrm{C})=11 \mathrm{~Hz}, \mathrm{PCH}\right), 30.3\left(\mathrm{C}^{2}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $31.6\left(\mathrm{~d},{ }^{3} J(\mathrm{P}=\mathrm{C})=6 \mathrm{~Hz}, \mathrm{PCHCH}_{2} \mathrm{CH}_{2}\right), 34.4\left(\mathrm{~d},{ }^{2} J(\mathrm{P}-\mathrm{C})=7 \mathrm{~Hz}\right.$, $\left.\mathrm{PCHCH}_{2}\right) ;{ }^{29} \mathrm{Si}$ NMR ($79 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$, , $) 3.9\left(\mathrm{SiMe}_{2} \mathrm{Bu}-t\right), 65.3\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{P}-\right.$ $\mathrm{Si})=19 \mathrm{~Hz}$) ${ }^{31} \mathrm{P}$ NMR ($\left.161 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \delta\right) 17.5 ;$ UV-vis (hexane) $\lambda_{\text {max }} / \mathrm{nm}(\epsilon) 362(3800), 433$ (2200), 472 (3000). Anal. Calcd for $\mathrm{C}_{42} \mathrm{H}_{93}{ }^{-}$ PPdSi $6:$ C, $55.80 ;$ H, 10.37. Found: C, $55.90 ;$ H, 10.20.
(11) Crystal data for $\mathbf{4}(150 \mathrm{~K}): \mathrm{C}_{42} \mathrm{H}_{93} \mathrm{PPdSi}_{6} \cdot\left(\mathrm{C}_{7} \mathrm{H}_{8}\right)$; FW. 995.23; triclinic; $\bar{P} 1$ (No. 2) $; a=12.0473(2) \AA ; b=12.7355(4) \AA ; c=20.3952(1) \AA ; \alpha$ $=76.653(8)^{\circ} ; \beta=71.024(7)^{\circ} ; \gamma=85.812(9)^{\circ} ; D_{\text {calc }}=1.140 \mathrm{~g} / \mathrm{cm}^{3} ; Z=$ $2 ; R 1=0.0463(I>2 \sigma(I)) ; w R 2=0.0962$ (all data); $\mathrm{GOF}=1.070$.
(12) Kira, M.; Maruyama, T.; Kabuto, C.; Ebata, K.; Sakurai, H. Angew. Chem., Int. Ed. Engl. 1994, 33, 1489.
(13) Kira, M.; Iwamoto, T.; Maruyama, T.; Kuzuguchi, T.; Yin, D.; Kabuto, C.; Sakurai, H. J. Chem. Soc., Dalton Trans. 2002, 1539.
(14) The r_{0} value for $\mathrm{Me}_{2} \mathrm{Si}=\mathrm{SiMe}_{2}$ was determined to be $2.180 \AA$ A by theoretical calculations at the MP2/6-31G(d) level.
(15) (a) Sakaki, S.; Ieki, M. Inorg. Chem. 1991, 30, 4218. (b) Sakaki, S.; Yamaguchi, S.; Musashi, Y.; Sugimoto, M. J. Organomet. Chem. 2001, 635, 173.
(16) All calculations were carried out at the B3LYP level using a Gaussian 98 program, revision A.11.4; Gaussian, Inc.: Pittsburgh, PA, 2001. The basis sets were $6-31 \mathrm{G}^{*}$ for H, C, Si, P and Lanl2dz for Pd. See the Supporting Information for the details of the calculations.
(17) See ref 8 for the terminology of T- and Y-types.
(18) Similar T-type structures have been found for other three-coordinate 14electron complexes. ${ }^{7,8}$ Because the energy difference between $\mathbf{9 U}$ and $\mathbf{9 S}{ }^{\ddagger}$ is very small, the possibility that $\mathbf{4}$ having bulky trialkylsilyl substituents adopts a symmetric structure similar to that of $\mathbf{9 S}^{\ddagger}$ in solution may not be ruled out. It is an interesting issue to explain why unsymmetric complex $\mathbf{9 U}$ is more stable than symmetric complex $\mathbf{9} \mathbf{S}^{\ddagger}$ in this particular case. More detailed MO analysis of these and related complexes is currently in progress.
(19) If we take x and y axes to be parallel and perpendicular to the $\mathrm{Si}=\mathrm{Si}$ bond, respectively, through the Pd metal in the three-membered ring plane, the $\mathrm{d}_{x y}$ orbital should be responsible for the π-back-donation. The electron donation from $\mathrm{d}_{x y}$ to $\mathrm{Si}=\mathrm{Si} \pi^{*}$ orbital will increase with increasing the overlap between phosphine n and $\mathrm{d}_{x y}$ orbitals. The overlap in $\mathbf{1 0}$ is approximately twice of that in $\mathbf{9 U}$, and no such overlap is expected in $\mathbf{9} \mathbf{S}^{\ddagger}$. The natural bond orbital (NBO) analysis indicates that, while σ-donation is similar among $9 \mathbf{U}, 9 \mathbf{S}^{\ddagger}$, and 10 , the extent of π-back-donation decreases in the order $\mathbf{1 0}>\mathbf{9 U}>\mathbf{9} \mathbf{S}^{\ddagger}$, being in accord with the order of the planarity around the $\mathrm{Si}=\mathrm{Si}$ bond. ${ }^{16}$ The θ values at Si^{1} and Si^{2} of $\mathbf{9 U}$ are significantly different from each other, suggesting strong trans influence of the phosphine ligand.
JA046354Y

